AMC575
Zynq UltraScale+ RFSoC FPGA, Double AMC, MTCA.4

Key Features
- Xilinx UltraScale+ RFSoC XCZU29DR FPGA
- 8 ADC and 16 DAC to the rear
- 8 GB of 64-bit wide DDR4 Memory (single bank) with ECC to CPU
- 8 GB of 64-bit wide DDR4 Memory (single bank to Fabric)
- MPSoC with block RAM and UltraRAM
- SD Card (option)
- 128 MB of boot Flash
- 64 GB of user Flash
- Double module, mid-size, MTCA.4

Benefits
- Zynq UltraScale+ MPSoC+ RF
- Analog I/O routed via RTM to support additional signal conditioning
- Electrical, mechanical, software, and system-level expertise in house
- Full system supply from industry leader
- AS9100 and ISO9001 certified company
AMC575

The AMC575 utilizes the Xilinx XCZU29DR RFSoC and is compliant to AMC.1, AMC.2, AMC.3 and AMC.4 specifications. The unit has an onboard, re-configurable FPGA which interfaces directly to the AMC FCLKA, TCLKA-D. It also has a dual bank of 64-bit wide DDR4 memory with ECC for a total of 16 GB. This allows for large buffer sizes to be stored during processing as well as for queuing the data to the host.

The RFSoC device includes 8 ADC (12-bit @ 2 GSPS) and 16 DAC (14-bit @ 6.4 GSPS) with analog I/O routed to a MicroRTM per MTCA.4. Clock and trigger I/O are also provided. The front panel has interface to the DisplayPort, dual USB and RS-232 Ports as well as a dual high-density connector for external I/O (total of 128 single ended or 64 differential).

The XCZU29DR includes a quad-core ARM Cortex-A53 application processing unit and dual-core Cortex-R5 real-time processing as well as over 4,200 DSP, 930 K logic cells and over 60 MB of internal memory (including 22.5 Mb of UltraRAM).

The Module has onboard 64 GB of Flash, 128 MB of boot flash and an SD Card as an option.
Figure 2: AMC575 Functional Block Diagram
Reference Design

VadaTech provides an extensive range of Xilinx based FPGA products. The FPGA products are in two categories; FPGA boards with FMC carriers and FPGA products with high speed ADC and DACs. The FPGA products are designed in various architectures such as AMC modules, PCIe cards and Open VPX.

VadaTech provides a reference design implementation for our FPGAs complete with VHDL source code, documentation and configuration binaries. The reference design focuses on the I/O ring of the FPGA to demonstrate low-level operation of the interconnections between the FPGA and other circuits on the board and/or backplane. It is designed to prove out the hardware for early prototyping, engineering/factory diagnostics and customer acceptance of the hardware, but it does not strive to implement a particular end application. The reference VHDL reduces customer time to develop custom applications, as the code can be easily adapted to meet customer's application requirements.

The reference design allows you to test and validate the following functionality (where supported by the hardware):

- Base and Fabric channels
- Clocks
- Data transfers
- Memory
- User defined LEDs

Xilinx provides Vivado Design Suite for developing applications on Xilinx based FPGAs. VadaTech provides reference VHDL developed using the Vivado Design Suite for testing basic hardware functionality. The reference VHDL is provided royalty free to use and modify on VadaTech products, so can be used within applications at no additional cost. However, customers are restricted from redistributing the reference code and from use of this code for any other purpose (e.g. it should not be used on non-VadaTech hardware).

The reference VHDL is shipped in one or more files based on a number of ordering options. Not all ordering options have an impact on the FPGA and a new FPGA image is created for those options that have direct impact on the FPGA. Use the correct reference image to test your hardware. For more information, refer to the FPGA reference design manual for your device which can be accessed from customer support site along with the reference images.

Supported Software

- Default FPGA image stored in flash memory
- Linux BSP
- Build Scripts
- Device Driver
- Reference application projects for other ordering options

The user may need to develop their own FPGA code or adapt VadaTech reference code to meet their application requirements. The supplied pre-compiled images may make use of hardware evaluation licenses, where necessary, instead of full licenses. This is because VadaTech does not provide licenses for the Vivado tool or Xilinx IP cores, so please contact Xilinx where these are required.

Xilinx also provides System Generator tools for developing Digital Signal Processing (DSP) applications.

See the following links:

Xilinx Vivado Design Suite, Xilinx System Generator for DSP.
Specifications

Architecture

<table>
<thead>
<tr>
<th>Physical</th>
<th>Dimensions</th>
<th>Double module, mid-size (full-size optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Width: 5.85" (148.5 mm)</td>
<td>Depth 7.11" (160.6 mm)</td>
</tr>
</tbody>
</table>

Type

- AMC FPGA Carrier: Xilinx Zynq UltraScale+ RFSoC

Standards

<table>
<thead>
<tr>
<th>AMC Type</th>
<th>AMCC0, AMCC1, AMCC2, AMCC3 and AMCC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Management</td>
<td>IPMI IPMI v2.0</td>
</tr>
<tr>
<td>GbE Lanes</td>
<td>Port 0 and 1</td>
</tr>
<tr>
<td>PCIe Lanes</td>
<td>x4 (4-7/8-11) or x8 (4-11) and additional Ports on 12-15 and 17-20 (17-20 are MLVDS)</td>
</tr>
<tr>
<td>10GbE/40GbE/SRIO</td>
<td>4-7, 8-11 and additional Ports on 12-15 and 17-20</td>
</tr>
</tbody>
</table>

Configuration

| Power | AMC575 ~45W FPGA load dependent |
| RTM | None |

Environmental

<table>
<thead>
<tr>
<th>Temperature</th>
<th>See Ordering Options and Environmental Spec Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>−40°C to +85°C</td>
</tr>
<tr>
<td>Vibration</td>
<td>Operating 9.8 m/s² (1G), 5 to 500 Hz on each axis</td>
</tr>
<tr>
<td>Shock</td>
<td>Operating 30G on each axis</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5 to 95% non-condensing</td>
</tr>
</tbody>
</table>

Front Panel Interface Connectors

- Micro USBs for MGT RS-232 and CPU RS-232
- Dual Micro USB for USB
- Display Port
- Dual High Density I/O Connector (128 singled ended or 64 diff)
- LEDs IPMI management control
- Debug (user defined) LED

Mechanical

- Hot-swap ejector handle

Software Support

- Operating System: Linux

Other

- MTBF: MIL Handbook 217-F@ TBD hrs
- Certifications: Designed to meet FCC, CE and UL certifications, where applicable
- Standards: VadaTech is certified to both the ISO9001:2000 and AS9100B:2004 standards
- Warranty: Two (2) years, see VadaTech Terms and Conditions

INTEGRATION SERVICES AND APPLICATION-READY PLATFORMS

VadaTech has a full ecosystem of OpenVPX, ATCA and MTCA products including chassis platforms, shelf managers, AMC modules, Switch and Payload Boards, Rear Transition Modules (RTMs), Power Modules, and more. The company also offers integration services as well as pre-configured Application-Ready Platforms. Please contact VadaTech Sales for more information.
Ordering Options

AMC575 – ABC-DEF-G0J

<table>
<thead>
<tr>
<th>A = Ports 12-15 to FPGA</th>
<th>D = SD Card</th>
<th>G = Clock Holdover Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Not routed</td>
<td>0 = No SD Card</td>
<td>0 = Standard (XO)</td>
</tr>
<tr>
<td>1 = Routed as SERDES*</td>
<td>1 = 32 GB</td>
<td>1 = Stratum-3 (TCXO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B = Ports 17-20 to FPGA</th>
<th>E = FPGA Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Not routed</td>
<td>1 = Low**</td>
</tr>
<tr>
<td>1 = Routed as MLVDS</td>
<td>2 = High</td>
</tr>
<tr>
<td></td>
<td>3 = Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C = Front Panel</th>
<th>F = PCIe Fabric</th>
<th>J = Temperature Range and Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Reserved</td>
<td>0 = No PCIe</td>
<td>0 = Commercial (−5° to +55°C), No coating</td>
</tr>
<tr>
<td>2 = Reserved</td>
<td>1 = PCIe on Ports 4-7</td>
<td>1 = Commercial (−5° to +55°C), Humiseal 1A33 Polyurethane</td>
</tr>
<tr>
<td>3 = Reserved</td>
<td>2 = PCIe on Ports 8-11</td>
<td>2 = Commercial (−5° to +55°C), Humiseal 1B31 Acrylic</td>
</tr>
<tr>
<td>4 = Reserved</td>
<td>3 = PCIe on Ports 4-11</td>
<td>3 = Industrial (−20° to +70°C), No coating</td>
</tr>
<tr>
<td>5 = Mid-size, MTCA 1 (captive screw)</td>
<td></td>
<td>4 = Industrial (−20° to +70°C), Humiseal 1A33 Polyurethane</td>
</tr>
<tr>
<td>6 = Full-size, MTCA 1 (captive screw)</td>
<td></td>
<td>5 = Industrial (−20° to +70°C), Humiseal 1B31 Acrylic</td>
</tr>
</tbody>
</table>

Notes: *These ports are not LVDS compatible.
**min order quantity required.
***Conduction cooled, temperature is at edge of module. Consult factory for availability.

For operational reasons VadaTech reserves the right to supply a higher speed FPGA device than specified on any particular order/delivery at no additional cost, unless the customer has entered into a Revision Lock agreement with respect to this product.

Related Products

- VT951
 - MicroTCA rugged 1U 19" rackmount chassis platform
 - Designed to meet MIL-STD-810F, MIL-STD-901D for shock/vibration
 - Supports up to six single module mid-size

- AMC592
 - AMC FPGA carrier for FMC per VITA 57
 - Xilinx UltraScale™ XCKU115 FPGA
 - Supported by DAQ Series™ data acquisition software

- FMC214
 - Dual complete transceiver signal chain solution using Analog Devices AD9361 transceiver
 - Frequency range 70 MHz to 6 GHz with instantaneous bandwidth from 200 kHz to 56 MHz
 - MIMO transceiver is Time Domain Duplex (TDD)