VPX577

Quad ADC 12-bit @ 10.4 GSPS with Dual DAC @ 9 GSPS Virtex UltraScale+, 6U VPX

Key Features

- Virtex UltraScale+ with XCVU13P FPGA
- Two FPGA banking option for how the ADC/DAC are connected to the SLR region (ordering option E)
- Zynq UlatraScale+ with XCZU4CG
- Dual bank of DDR-4 memory with 8G per bank
- Quad ADC 12-bit @ 10.4 GSPS with TI ADC12DJ5200 or Octal ADC 12-bit @ 5.2 GSPS
- Dual DAC 14-bit @ 9 GSPS with TI DAC38RF82
- Health Management through dedicated Processor

Benefits

- XCVU13P has large internal memory
- Reference design with VHDL source code speeds application development
- Electrical, mechanical, software, and system-level expertise in house
- Full system supply from industry leader
- AS9100 and ISO9001 certified company

OpenVP

THE POWER OF VISION

VPX577

The VPX577 provides Quad ADC with sampling rates of up to 10.4 GSPS at 12-bit resolution utilizing the TI ADC12DJ5200. Each ADC is configurable to run as dual channel at half the sampling rate (5.2 GSPS) to provide Octal channels.

The module has Dual DAC based on TI DAC38RF82 with 14-bit at 9 GSPS.

Interfacing to the FPGA is a 64-bit dual bank of DDR-4 memory with 8GB per bank.

The XCVU13P FPGA contains large 360 Mb on-chip UltraRAM, excellent for radar simulators and smart jammers. The FPGA interfaces directly to rear I/O via SERDES and LVDS, supporting PCIe, SRIO, GbE/10GbE/100GbE or Aurora backplane connections. General purpose I/O are routed to the P2.

ADCs have a common sampling rate from common PLL locked to a 10/100 MHz reference clock sourced from front panel or backplane. The sampling clock on the ADCs are fully coherent with each other. The DAC have a coherent sampling clock as well.

The VPX577 has two routing option for the ADC/DAC interfacing to the FPGA. Option E = 0 connects dual ADC and a single DAC on the top SLR region and dual ADC and single DAC on the bottom SLR region. Option E = 1 connects all four ADC on the top SLR region and dual DAC on the bottom SLR region.

The Module has a Zynq UltraScale+ FPGA on board. The Zynq has dual GbE to the P1 as well as x2 SERDES to the P1 which could be configured as PCIe. The Zynq interfaces to the Virtex FPGA via PCIe x1 with PCIe Tandem Configuration capability, additional x2 SERDES, and GPIO.

The VPX577 includes platform health management/monitoring capability using VadaTech's field-proven IPMI software. An onboard management controller has the ability to access board sensors and manage FPGA image updates.

The unit is available in a range of temperature and shock/vib specifications per ANSI/VITA 47, up to V3 and OS2.

Figure 1: VPX577

Figure 2: VPX577 without Heatsink

Figure 3: VPX577 Front Panel View

2

Reference Design

VadaTech provides an extensive range of Xilinx based FPGA products. The FPGA products are in two categories; FPGA boards with FMC carriers and FPGA products with high-speed ADC and DACs. The FPGA products are designed in various architectures such as AMC modules, PCIe cards and Open VPX.

VadaTech provides a reference design implementation for our FPGAs complete with VHDL source code, documentation and configuration binaries. The reference design focuses on the I/O ring of the FPGA to demonstrate low-level operation of the interconnections between the FPGA and other circuits on the board and/or backplane. It is designed to prove out the hardware for early prototyping, engineering/factory diagnostics and customer acceptance of the hardware, but it does not strive to implement a particular end application. The reference VHDL reduces customer time to develop custom applications, as the code can be easily adapted to meet customer's application requirements.

The reference design allows you to test and validate the following functionality (where supported by the hardware):

- Base and Fabric channels
- Clocks
- Data transfers
- Memory
- User defined LEDs

Xilinx provides Vivado Design Suite for developing applications on Xilinx based FPGAs. VadaTech provides reference VHDL developed using the Vivado Design Suite for testing basic hardware functionality. The reference VHDL is provided royalty free to use and modify on VadaTech products, so can be used within applications at no additional cost. However, customers are restricted from redistributing the reference code and from use of this code for any other purpose (e.g. it should not be used on non-VadaTech hardware).

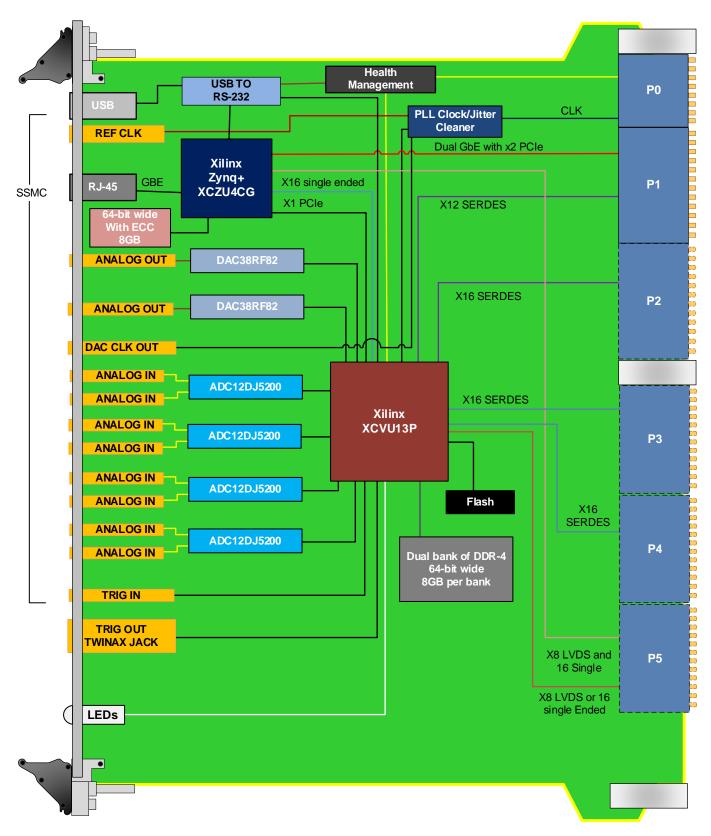
The reference VHDL is shipped in one or more files based on a number of ordering options. Not all ordering options have an impact on the FPGA and a new FPGA image is created for those options that have direct impact on the FPGA. Use the correct reference image to test your hardware. For more information, refer to the FPGA reference design manual for your device which can be accessed from the customer support site along with the reference images.

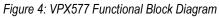
Supported Software

- Default FPGA image stored in flash memory
- Linux BSP
- Build Scripts
- Device Driver
- Reference application projects for other ordering options

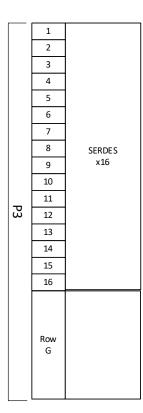
The user may need to develop their own FPGA code or adapt VadaTech reference code to meet their application requirements. The supplied precompiled images may make use of hardware evaluation licenses, where necessary, instead of full licenses. This is because VadaTech does not provide licenses for the Vivado tool or Xilinx IP cores, so please contact Xilinx where these are required.

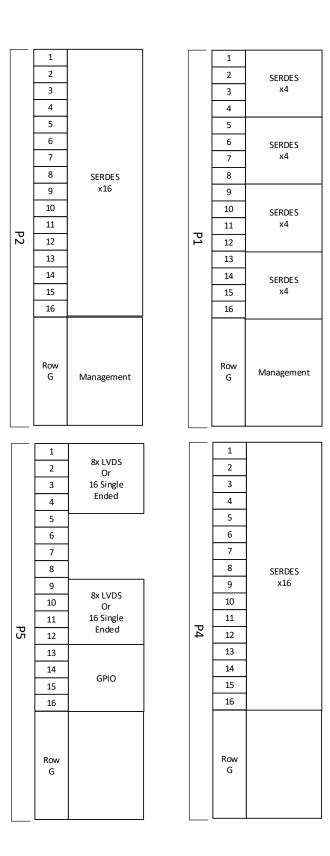
Xilinx also provides System Generator tools for developing Digital Signal Processing (DSP) applications.


See the following links:


Xilinx Vivado Design Suite, Xilinx System Generator for DSP.

Software Development Acceleration


Please contact VadaTech for different software packages that are available for the VPX577.


Block Diagram



Backplane Pinout

Specifications

Architecture					
Physical	Dimensions	6U, 1" pitch			
Туре	Controller	OpenVPX payload module with Health Management			
Standards					
VPX	Туре	VITA 46.x			
VPX	Туре	VITA 65 OpenVPX			
Module Management	IPMI	IPMI v2.0			
Configuration					
Power	VPX577	~90W FPGA load dependent			
Front Panel	Interface Connectors	General purpose I/O via RTM			
		Analog input/output via SSMC			
		LVDS I/O via RTM			
		Clock via SSMC			
	USB	RS-232 from FPGA/Zynq/Health Management via USB-to-RS-232			
	LEDs	4 LED and Health Management			
VPX Interfaces	Slot Profiles	See Ordering Options			
	Rear IO	Health Management, Clock on P0			
		x16 SERDES to P1; x16 SERDES to P2/P3/P4			
		GPIO and LVDS on P5			
Software Support	Operating System	Agnostic			
Other					
MTBF	MIL Hand book 217-F@ TBD hrs				
Certifications	Designed to meet FCC, CE and UL certifications, where applicable				
Standards	VadaTech is certified to both the ISO9001:2015 and AS9100D standards				
Warranty	Two (2) years, see VadaTech Terms and Conditions				

INTEGRATION SERVICES AND APPLICATION-READY PLATFORMS

VadaTech has a full ecosystem of OpenVPX, ATCA and MTCA products including chassis platforms, shelf managers, AMC modules, Switch and Payload Boards, Rear Transition Modules (RTMs), Power Modules, and more. The company also offers integration services as well as preconfigured Application-Ready Platforms. Please contact VadaTech Sales for more information.

6

Ordering Options

VPX577 – ABC-DE0-GHJ

A = PCle on P2	D = FPGA Speed	G = Slot Profile	
0 = No PCle 1 = x4 PCle 2 = x8 PCle 3 = x16 PCle	1 = High (-2) 2 = Reserved 3 = Highest (-3E)*	0 = 5 HP, VITA 48.1	
B = PCle on P1 (from Zynq+) Ports 13/14	E = ADC/DAC Bank Configuration	H = Environmental	
0 = No PCle 1 = x2 PCle	0 = 2x ADC and 1x DAC on top SLR and 2x ADC and 1X DAC on the bottom SLR 1 = 4x ADC on top SLR and 2x DAC on the bottom SLR	See Environmental Specification	
C = VPX Connector Type		J = Conformal Coating	
0 = High speed 50u Gold Rugged 1 = KVPX Connectors		0 = No coating 1 = Humiseal 1A33 Polyurethane 2 = Humiseal 1B31 Acrylic	

Notes:

*Minimum order quantity.

For operational reasons VadaTech reserves the right to supply a higher speed FPGA device than specified on any particular order/delivery at no additional cost, unless the customer has entered into a Revision Lock agreement with respect to this product.

Environmental Specification

Air Cooled			Conduction Cooled		
Option H	H = 0	H = 1	H = 2	H = 3	H = 4
Operating Temperature	AC1* (0°C to +55°C)	AC3* (-40°C to +70°C)	CC1* (0°C to +55°C)	CC3* (-40°C to +70°C)	CC4* (-40°C to +85°C)
Storage Temperature	C1* (-40°C to +85°C)	C3* (-50°C to +100°C)	C1* (-40°C to +85°C)	C3* (-50°C to +100°C)	C3* (-50°C to +100°C)
Operating Vibration	V2* (0.04 g2/Hz max)	V2* (0.04 g2/Hz max)	V3* (0.1 g2/Hz max)	V3* (0.1 g2/Hz max)	V3 (0.1 g2/Hz max)
Storage Vibration	OS1* (20g)	OS1* (20g)	OS2* (40g)	OS2* (40g)	OS2* (40g)
Humidity	95% non-condensing	95% non-condensing	95% non-condensing	95% non-condensing	95% non-condensing

Notes:

*Nomenclature per ANSI/VITA 47. Contact local sales office for conduction cooled (H = 2, 3, 4).

Related Products

VPX004

AMC590

VPX752

VTX870

8

- Unified 1 GHz quad-core CPU for, Shelf Manager, and Fabric management
- Automatic fail-over with redundant VPX004
- 1GbE base switch with dual 100/1000/10G uplink
- Quad channel high speed ADC
- UltraScale FPGA
- Front panel clock for synchronization
- 6U VPX module Intel 5th Generation Xeon-D SoC
- PCIe Gen3 x 16 (dual x8 or Quad x4)
- Quad 10GbE XAUI

•

- Open VPX benchtop development platform
- Dedicated Switch/management slot
- Up to five 6U VPX payload slots

Contact

VadaTech Corporate Office

198 N. Gibson Road, Henderson, NV 89014 Phone: +1 702 896-3337 | Fax: +1 702 896-0332

Asia Pacific Sales Office

7 Floor, No. 2, Wenhu Street, Neihu District, Taipei 114, Taiwan Phone: +886-2-2627-7655 | Fax: +886-2-2627-7792

VadaTech European Sales Office

VadaTech House, Bulls Copse Road, Southampton, SO40 9LR Phone: +44 2380 016403

info@vadatech.com | www.vadatech.com

Choose VadaTech

We are technology leaders

- · First-to-market silicon
- Constant innovation
- Open systems expertise

We commit to our customers

- · Partnerships power innovation
- · Collaborative approach
- Mutual success

We deliver complexity

- Complete signal chain
- System management
- Configurable solutions

We manufacture in-house

- Agile production
- · Accelerated deployment
- AS9100 accredited

Trademarks and Disclaimer

The VadaTech logo is a registered trademark of VadaTech, Inc. Other registered trademarks are the property of their respective owners. AdvancedTCA[™] and the AdvancedMC[™] logo are trademarks of the PCI Industrial Computers Manufacturers Group. All rights reserved. Specification subject to change without notice.

© 2020 VadaTech Incorporated. All rights reserved. DOC NO. 4FM737-12 REV 01 | VERSION 3.0 – JAN/22

